Analytic Solution of Wave Propagating over Depressive Seabed
نویسندگان
چکیده
منابع مشابه
An Extended Analytic Solution of Combined Refraction and Diffraction of Long Waves Propagating over Circular Island
An analytic solution of long waves scattering by a cylindrical island mounted on a permeable circular shoal was obtained by solving the linear long wave equation LWE . The solution is in terms of the Bessel function expressed by complex variables. The present solution is suitable for arbitrary bottom configurations described by a power function with two independent parameters. For the case of t...
متن کاملAnalytic Controllability of the Wave Equation over a Cylinder
We analyze the controllability of the wave equation on a cylinder when the control acts on the boundary, that does not satisfy the classical geometric control condition. We obtain precise estimates on the analyticity of reachable functions. As the control time increases, the degree of analyticity that is required for a function to be reachable decreases as an inverse power of time. We conclude ...
متن کاملAn Analytic Study on the Dispersion of Love Wave Propagation in Double Layers Lying Over Inhomogeneous Half-Space
In this work, attempts are made to study the dispersion of Love waves in dry sandy layer sandwiched between fiber reinforced layer and inhomogeneous half space.Inhomogeneity in half space associated with density and rigidity and considered in exponential form. Displacement components for fiber reinforced layer, dry sandy layer and inhomogeneous half-space have been obtained by using method of s...
متن کاملReconstruction of Propagating Complex Wave Fields
In this paper, an approximate real-part sufficiency condition is developed for complex-valued one-dimensional even signals and two-dimensional circularly symmetric signals. The two-dimensional result is used in a reconstruction algorithm which is applied to synthetic and experimental underwater acoustic fields.
متن کاملWave front interaction model of stabilized propagating wave segments.
A wave front interaction model is developed to describe the relationship between excitability and the size and shape of stabilized wave segments in a broad class of weakly excitable media. These wave segments of finite size are unstable but can be stabilized by feedback to the medium excitability; they define a separatrix between spiral wave behavior and contracting wave segments. Unbounded wav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of the Korea Contents Association
سال: 2012
ISSN: 1598-4877
DOI: 10.5392/jkca.2012.12.03.434